Lp Bounds for Hilbert Transforms Along Convex Surfaces
نویسندگان
چکیده
منابع مشابه
Double Hilbert Transforms along Polynomial Surfaces in R3
where P(s, t) is a polynomial in s and t with P(0,0)= 0, and ∇P(0,0)= 0. We call H the (local) double Hilbert transform along the surface (s, t,P (s, t)). The operator may be precisely defined for a Schwartz function f by integrating where ≤ |s| ≤ 1 and η ≤ |t | ≤ 1, and then taking the limit as ,η→ 0. The corresponding 1-parameter problem has been extensively studied (see [RS1], [RS2], and [S]...
متن کاملLp ESTIMATES FOR THE HILBERT TRANSFORMS ALONG A ONE-VARIABLE VECTOR FIELD
We prove L estimates on the Hilbert transform along a measurable, non-vanishing, one-variable vector field in R. Aside from an L estimate following from a simple trick with Carleson’s theorem, these estimates were unknown previously. This paper is closely related to a recent paper of the first author ([2]).
متن کاملUniform Bounds for the Bilinear Hilbert Transforms
It is shown that the bilinear Hilbert transforms Hα,β(f, g)(x) = p.v. ∫ R f(x− αt)g(x− βt) dt t map Lp1(R) × Lp2(R) → Lp(R) uniformly in the real parameters α, β when 2 < p1, p2 < ∞ and 1 < p = p1p2 p1+p2 < 2. Combining this result with the main result in [9], we deduce that the operators H1,α map L2(R)×L∞(R) → L2(R) uniformly in the real parameter α ∈ [0, 1]. This completes a program initiated...
متن کاملEndpoint Bounds for an Analytic Family of Hilbert Transforms
In R2, we consider an analytic family of operators Hz , z ∈ C, whose convolution kernel is obtained by taking −z − 1 derivatives of arclength measure on the parabola (t, t2) in a homogeneous way, defined in such a way so that H−1 be the standard parabolic Hilbert transform. For a fixed z, we study the set of p for which Hz is bounded on Lp(R2) and for the critical z that captures the degree of ...
متن کاملUniform Bounds for the Bilinear Hilbert Transforms, I
It is shown that the bilinear Hilbert transforms Hα,β(f, g)(x) = p.v. Z R f(x− αt)g(x− βt) dt t map L1(R)×L2(R)→ L(R) uniformly in the real parameters α, β when 2 < p1, p2 <∞ and 1 < p = p1p2 p1+p2 < 2. Combining this result with the main result in [9], it follows that the operators H1,α map L (R) × L∞(R) → L(R) uniformly in the real parameter α ∈ [0, 1], as conjectured by A. Calderón.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1995
ISSN: 0022-247X
DOI: 10.1006/jmaa.1995.1223