Lp Bounds for Hilbert Transforms Along Convex Surfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Hilbert Transforms along Polynomial Surfaces in R3

where P(s, t) is a polynomial in s and t with P(0,0)= 0, and ∇P(0,0)= 0. We call H the (local) double Hilbert transform along the surface (s, t,P (s, t)). The operator may be precisely defined for a Schwartz function f by integrating where ≤ |s| ≤ 1 and η ≤ |t | ≤ 1, and then taking the limit as ,η→ 0. The corresponding 1-parameter problem has been extensively studied (see [RS1], [RS2], and [S]...

متن کامل

Lp ESTIMATES FOR THE HILBERT TRANSFORMS ALONG A ONE-VARIABLE VECTOR FIELD

We prove L estimates on the Hilbert transform along a measurable, non-vanishing, one-variable vector field in R. Aside from an L estimate following from a simple trick with Carleson’s theorem, these estimates were unknown previously. This paper is closely related to a recent paper of the first author ([2]).

متن کامل

Uniform Bounds for the Bilinear Hilbert Transforms

It is shown that the bilinear Hilbert transforms Hα,β(f, g)(x) = p.v. ∫ R f(x− αt)g(x− βt) dt t map Lp1(R) × Lp2(R) → Lp(R) uniformly in the real parameters α, β when 2 < p1, p2 < ∞ and 1 < p = p1p2 p1+p2 < 2. Combining this result with the main result in [9], we deduce that the operators H1,α map L2(R)×L∞(R) → L2(R) uniformly in the real parameter α ∈ [0, 1]. This completes a program initiated...

متن کامل

Endpoint Bounds for an Analytic Family of Hilbert Transforms

In R2, we consider an analytic family of operators Hz , z ∈ C, whose convolution kernel is obtained by taking −z − 1 derivatives of arclength measure on the parabola (t, t2) in a homogeneous way, defined in such a way so that H−1 be the standard parabolic Hilbert transform. For a fixed z, we study the set of p for which Hz is bounded on Lp(R2) and for the critical z that captures the degree of ...

متن کامل

Uniform Bounds for the Bilinear Hilbert Transforms, I

It is shown that the bilinear Hilbert transforms Hα,β(f, g)(x) = p.v. Z R f(x− αt)g(x− βt) dt t map L1(R)×L2(R)→ L(R) uniformly in the real parameters α, β when 2 < p1, p2 <∞ and 1 < p = p1p2 p1+p2 < 2. Combining this result with the main result in [9], it follows that the operators H1,α map L (R) × L∞(R) → L(R) uniformly in the real parameter α ∈ [0, 1], as conjectured by A. Calderón.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1995

ISSN: 0022-247X

DOI: 10.1006/jmaa.1995.1223